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Abstract. Using the analogy between the statistics of the levels of quantum Hamiltonians 
and the eigenvalues of random matrices we use (an appropriate choice of) the latter in 
order to study the transition region near integrability. We show that the nearest-neighbour 
spacing distribution is linear for small spacings while the inverse of its slope is proportional 
to the amplitude of the (integrability-destroying) perturbation. 

The understanding of quantum chaos has considerably progressed thanks to the study 
of autonomous Hamiltonian systems [ 11. Semiclassical arguments [2] and accurate 
numerical calculations [3] have allowed the formulation of conjectures relating the 
statistics of the energy levels of ergodic systems to the statistics of eigenvalues of 
random matrices ( R M )  [4], which are well known. In fact Dyson [ 5 ]  has shown that, 
depending on the symmetries of the system, the statistics fall into one of three generic 
classes. For Hamiltonians with time-reversal invariance (and integer-spin particles) 
the distribution of the spacings between nearest-neighbours (NNSD) is very close to 
the famous Wigner surmise (.rr/2)s e-rr’4sz [6]. When time-reversal invariance is broken 
[7], or half-integer-spin particles (in the absence of spatial symmetries), are considered 
[8], the repulsion between levels becomes stronger, in agreement with the RM predic- 
tions. However the similarity of the level statistics of RM and quantum Hamiltonians 
cannot be due to a presumed random character of the matrix elements of the latter 
(which was shown in [9] not to be present). Furthermore when one looks at fine-scale 
level fluctuations [lo] it turns out that the RM theory does not suffice in order to 
reproduce all the details. In fact, the existence of classical periodic orbits, as shown 
by Berry [ 111, leads to deviations between the quantal behaviour of ergodic systems 
and simple RM predictions. Still if one limits oneself to the study of quantities such 
as the N N S D  the predictions of the RM theory can be extremely accurate. Moreover 
this agreement shows that the behaviour of ergodic systems is universal, i.e. the statistics 
do not depend on the fine details of the system. 

At the antipodes of ergodicity lies complete integrability. In this case also the 
statistics of the levels of the system are universal. For the NNSD, for example, one 
obtains a Poisson distribution, e-’, a result that can be derived from very general 
semiclassical considerations [ 121 and which has been amply materialized in realistic 
calculations. (Still the fluctuations around the Poisson distribution, in numerically 
obtained spectra, can be quite large [13], depending on the system one studies. This 
makes the treatment of integrable systems particularly delicate.) The Poisson statistics 
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is precisely what results from a collection of levels, (given by the elements of a diagonal 
matrix) randomly distributed in a given interval. Thus again in the integrable case one 
finds universality and a relation with the statistics of random matrices’ eigenvalues. 

Naturally the question arises as to what happens in the transition region between 
integrability and ergodicity. The main bulk of physical systems lies precisely in this 
intermediate region and the mixing problem is still open even on the classical level 
[ 141. Several studies [ 15 and references therein] have been devoted to the analysis of 
this problem and it is clear that no universal description of the entire spectral statistics 
can be expected in this region. Roughly speaking, if one considers a Hamiltonian 
whose classical behaviour can be made to change from integrable to ergodic, for 
example through the variation of a parameter, the NNSD moves from a Poisson to a 
Wigner-type distribution. Several prescriptions have been given for the description of 
the NNSD in the intermediate region. The most popular ones are the ones due to Berry 
and Robnik [16] and to Brody [17]. Curiously enough, both present some flaws. The 
Berry-Robnik distribution reads: 

PBR(s) = e‘q-”’ ((1 - q ) 2  erfc(J;;qs/2) + [ 2 q ( l -  q )  + (v /2)q3s]  e-(T’4)q2r2 1 ( 1 )  

where q is the fraction of the phase-space filled with chaotic orbits. While its limits 
at q = 0 and q = 1 are correct, for 0 < q < 1,  PBR(0) has non-zero value. This is unrealistic 
as we know that any small perturbation of degenerate levels introduces a repulsion, 
at least at small range, and thus lifts degeneracies, i.e. P ( 0 )  =.O. Of course if one looks 
at numerically obtained NNSD with a large bin size, the agreement with the Berry- 
Robnik distribution is fair enough. However detailed calculations show that at small 
splittings the agreement breaks down [ 181. The Brody distribution: 

(2) 

on the other hand vanishes as s + O  but has an infinite derivative at that point, an 
unrealistic feature. Due to the vanishing at s = 0, the Brody distribution overshoots 
the Poisson exponential at larger s. (This fact may be at the origin of the success of 
the Brody distribution in representing numerically obtained NNSD).  

With the two most popular parametrizations of the NNSD in the transition region 
presenting some undesirable feature we are left with no clear guide. The aim of this 
paper is to analyse the level statistics in the region near integrability in order to extract 
any possible universal behaviour, at least for small spacings. The one thing that seems 
reasonable to assume is that the NNSD vanishes at s = 0 for all but the strictly integrable 
systems. Indeed Robnik [ 191 obtained this result using perturbation theory of pairs of 
levels. Here we present a slightly different 2 x 2 random matrix model (see also [20]). 
Let us start with a matrix: 

P~(s) = a ( q +  1)sq e-asq+’ with (Y = {r[ ( q  + 2)/(  q + l)]}q+” 

b ,  
E - a / 2  ( b & + a 1 2  

where a and b are randomly chosen according to the following laws: 

p (  a > A )  = e-* 

(where p ( a  > A )  means the probability for a to be larger than A )  and 

p ( b  > B )  = F ( B )  

with F ( 0 )  = 1,  F(m)  = 0. Thus in the absence of the off-diagonal perturbation b, the 
level spacing is distributed according to a Poisson law. When b is present the splitting 
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becomes S = ( ~ ~ + 4 b ~ ) ’ / ~  and the probability p(S > s) is just: 

p(S > s) = e-’+ 

Thus the distribution of level spacings is: 

dA F ( m / 2 )  e-*. los 
where f ( u )  = -dF/du. Putting A = s sin 6 we get: 

P ( S )  =? 
2 

def (: cos 0) e-’ sin ’. (5) 

We remark that if f(0) is finite and non-zero then P ( s )  + s~rf(0)/4, i.e. the spacing 

distribution vanishes linearly at zero spacing. (In fact, it would still vanish, though 
not linearly, iff(s)  were divergent at s = 0 but integrable over [0, 11.) Next we introduce 
a family of distributions F through the scaling F ( u )  = @(u/A) and define 4 = 4’. 
We obtain thus: 

s-0 

dB +(s COS 8/2A) e-Ssin e 
2A 

Thus the use of random matrices suffices in order to establish the main feature of 
the NNSD when integrability is broken: linear repulsion of levels with a slope which 
is inversely proportional to the small parameter that measures the departure from 
integrability. This is as universal a behaviour one can hope to get for near-integrable 
systems. 

For Gaussian-distributed off-diagonal matrix elements @ is an error function and 
4(  U )  = Here the scaling parameter A measures the magnitude of the 
off-diagonal matrix elements. Thus a small A indicates a small perturbation to the 
levels. We find finally: 

d e  , - s s ine  e-s2cos2 e m 2  
2A (7) 

For small s we can neglect e-’ sin e and the angular integral can be readily computed: 

P (  s) = - A sd - Io( s2/ 16A ’) e-s2/16A2 for S K  1 (8) 
where Io is a Bessel function, which tends to one as s goes to zero. 

Thus the use of random matrices suffices in order to establish the main feature of 
the NNSD when integrability is broken: linear repulsion of levels with a slope which 
is inversely proportional to the small parameter that measures the departure from 
integrability. This is as universal a behaviour one can hope to get for near-integrable 
systems. 

The distribution obtained in (7)  under integral form can be useful in another way 
also. When s/A >> 1 and s = 1 and we remark that the main contribution to the integral 
comes from the region where cos 6 << 1 i.e. 8 = ~ / 2 .  In this case we can replace e-’ sin e 
by e-’ and we obtain an approximate expression for the NNSD which reads: 

r 

P (  s) = - - Io( s2/ 16A *) e-s2’16h2 e-’ 
A 8  J“ (9) 

We remark that for s +CO the term multiplying e-’ goes exactly to 1, which means that 
the distribution (9) goes over to the Poisson exponential. Thus we have another 
expression for the representation of the NNSD in the transition region, which, although 
derived through drastic approximations, presents the correct limits at s + 0 and s + 00. 
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Figure 1. Nearest-neighbour spacings distribution obtained for various values of the (per- 
turbation) parameter A. A = O . O O l .  Figures ( b )  give an enlarged view of the small-spacings' 
region. The continuous curve corresponds to a fit with expression (IO), while the chain 
curve represents expression (11). The Poisson distribution is given in by the dot curve. 
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Figure 2. Same as figure 1 but A = 0.005. 
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Figure 3. Same as figure 1 but A =0.010. 

Still the fact that (9) is only approximate can be seen in the fact that j: P ( s )  ds # 1 
and s P ( s )  ds # 1. However the deviation from 1 goes to zero at least as fast as A 
and thus stays very small in the region near integrability. As we will see further on, 
this expression will be quite useful. 

To our knowledge, very few studies of the pertinence of RM in the transitional 
region exist (but see the seminal work of Pandey [21]). A comparison of the structure 
of RM exhibiting Poisson and Wigner NNSD'S suggests that for the transition region 
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Figure 4. Same as figure 1 but A =0.050. 
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Figure 5. Same as figure 1 but A = 0.100. 

008, 

0061 

.i( 
0 0 02 0 04 0 06 0 08 

A 

Figure 6. Best fitting parameter a, for expression ( lo) ,  as a function of A, together with 
the line a = A (broken curve). Notice that for small enough A's we obtain a = A .  

one must consider band matrices [22], i.e. matrices where the non-zero matrix elements 
are concentrated around the diagonal. (The results of a recent study [23] on 3 x 3 band 
matrices do not apply to our case because of a different choice of the matrix element 
distribution and the fact that they are specific to the 3 x 3 case). In what follows we 
will consider tridiagonal matrices. The reason for this choice is mainly the fact that 
the diagonalisation of such matrices is extremely fast and accurate. Thus we can obtain 
high-quality statistics making possible a fine-scale study of the transition region. But 
a physical motivation also exists. In a recent work [24], Feingold et a1 have shown 
that, at the semi-classical limit, by an appropriate ordering of the eigenbasis of a given 
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Hamiltonian, a Hamiltonian resulting from the first through a perturbation has a 
banded structure. The choice of elements of our matrices is carried through in three 
steps. First the diagonal elements, for a N x N matrix, are randomly chosen in the 
interval [0, N I ,  with a constant probability. Next we reorder them in order of increasing 
magnitude on the diagonal. Then we choose the off-diagonal matrix elements according 
to the probability given by a Gaussian with variance A, which will be the small parameter 
in our calculations. Only tridiagonal matrices have been considered. In fact, when A 
is small, elements further away from the diagonal contribute higher powers of A in 
the levels and are, thus, of negligible effect. This, of course, ceases to be true for larger 
A, and the behaviour of a tridiagonal matrix at A = 1 can be substantially different 
from that of a full matrix. The matrix size we have used throughout our calculations 
is N = 200 and in order to improve the statistics several (more than 1000) such matrices 
were diagonalized. The NNSD of their spectra were superimposed in order to get the 
final distribution. The use of hundreds of thousands of levels allowed us to obtain 
very detailed results in the ‘near-integrability’ region of very small A’s even for extremely 
small spacings (figure 1). 

We remark readily that the NNSD: ( a )  goes to zero as s + 0 and ( b )  does so linearly. 
For a larger s the distribution P ( s )  goes over to a pure Poisson e-’. Since the integral 
over each of the two distributions must be equal to unity, it is clear that for spacings 
s of the order of A the histogram must overshoot the Poisson exponential. This is 
indeed the case. In order to describe the global behaviour of P (  s) we have considered 
two parametrizations. The first is directly inspired from (9): 

P ( s )  =- CY sd - I o ( s 2 / 1 6 a 2 )  e-s2’16a2 e-’ (10) 

where CY is a free parameter. The second 

has been constructed so as to have the required properties: P (  s) a s as s + 0, P (  s) = eC5 
as s >> A, and moreover satisfying J: P ( s )  ds = 1 and 1: s P ( s )  ds = 1 .  As we can see in 
figures 1-5 both expressions represent the data in a most satisfying manner (once the 
a, p, y have been adjusted through a x 2  fit). In particular the (quite appreciable) 
overshoot around s = A (for very small values of A )  is very well reproduced. 

As we have stated previoisly, the transition region near integrability does not present 
a universal behaviour except from the fact that P ( s )  vanishes at s + O  with a slope 
inversely proportional to the small parameter characterizing the off-diagonal perturba- 
tion. In order to check this feature we have estimated the slope of P ( s )  at the origin 
using (lo),  obtaining the parameter a. In figure 6 we present the dependence of a, 
obtained through a x 2  fit, as a function of the small parameter A. We remark that as 
A + 0, a goes over to A, in perfect agreement with the predictions. 

Thus the study of RM, with the appropriate structure, has allowed us to obtain 
detailed statistics in the transition region ‘near integrability’. The latter term is to be 
understood, as explained at the outset, through the relation of the statistics of RM 

eigenvalues and those of the levels of quantum Hamiltonians. Thus, at least for the 
NNSD, our results can be considered as describing also the behaviour of the quantal 
spectra of near-integrable Hamiltonians. Moreover the two parametrizations (10) and 
( 1 1 )  that we have proposed can be particularly useful in the description of the 
distributions obtained through realistic calculations in the transition region. 
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Note added in proof: After this paper was completed and submitted for publication, we came across the 
paper by F Leyvraz and T H Seligman entitled ‘Self-consistent perturbation theory for random matrix 
ensembles’ (1990 J. Phys. A :  Math. Gen. 18 1555). They treat a problem very similar to ours and derive, 
among others, an approximate expression for the two-point correlation function pz of levels in the case of 
a Poisson ensemble subject to a GOE perturbation. The small spacing behaviour of p2 is in perfect agreement 
with the N N S D  obtained in our approach. Incidentally, p2 given as an integral in their equation (4.2) can be 
expressed in closed form. For C = 2, we find p2(x; A )  = 6 6  e-6’Io([) where 6 = x / 4 d  and Io is a Bessel 
function. 
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